
12.5) Equations Of Planes and Lines

In two-dimensional space, an equation of the form Ax  By  C, where A and B are not both
zero, gives us a line. In three-dimensional space, an equation of the form
Ax  By  Cz  D, where A, B, and C are not all zero, gives us a plane, rather than a line.
(However, both equations are referred to as linear equations.)

Usually, the equations Ax  By  C and Ax  By  Cz  D are written so that the first nonzero
coefficient is positive rather than negative. There is no mathematical reason for this; it’s just
a nicety.

1. Equations of Planes:

x  0 is the equation of the y, z plane. Technically, this is 1x  0y  0z  0.

y  0 is the equation of the x, z plane. Technically, this is 0x  1y  0z  0.

z  0 is the equation of the x,y plane. Technically, this is 0x  0y  1z  0.

The x,y plane, the x, z plane, and the y, z planes are referred to as the coordinate planes
because each is determined by two of our coordinate axes (the x,y plane is determined by
the x and y axes, the x, z plane is determined by the x and z axes, and the y, z plane is
determined by the y and z axes).

For any nonzero real number k, x  k is a plane parallel to the plane x  0, y  k is a plane
parallel to the plane y  0, and z  k is a plane parallel to the plane z  0.

The x,y plane or any plane parallel to it z  0 or z  k is a said to be a horizontal plane.
Every horizontal plane perpendicular to the z axis and parallel to the x and y axes.
Furthermore, it is perpendicular to the x, z plane and to the y, z plane.

Any plane perpendicular to the x,y plane is said to be a vertical plane. Every vertical plane
is parallel to the z axis.
 The y, z plane or any plane parallel to it x  0 or x  k is a vertical plane. It is

perpendicular to the x axis and is parallel to the y axis as well as the z axis.
Furthermore, it is perpendicular to the x, z plane as well as the x,y plane.

 The x, z plane or any plane parallel to it y  0 or y  k is a vertical plane. It is
perpendicular to the y axis and is parallel to the x axis as well as the z axis.
Furthermore, it is perpendicular to the y, z plane as well as the x,y plane.

 A plane such as 2x  3y  6 is an oblique vertical plane–i.e., a plane that is vertical
(and hence parallel to the z axis), but neither parallel nor perpendicular to either the x
axis or the y axis. It is not perpendicular to either the x, z plane or the y, z plane. We
also refer to this as an oblique plane parallel to the z axis.
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 A plane such as 2x  3y  0 is an oblique vertical plane passing through the origin,
0,0,0.

Notice that every vertical plane has an equation of the form Ax  By  D, where A and B are
not both zero.

The orthogonal projection of a vertical plane onto the x,y plane is a line in the x,y plane,
whose equation is of the form Ax  By  D, where A and B are not both zero.
 The projection of the y, z plane, x  0, onto the the x,y plane is the line x  0, which

coincides with the y axis and is considered a “vertical” line in the x,y plane.
 For nonzero k, the projection of the plane x  k onto the the x,y plane is the line

x  k, which is parallel to the y axis and is considered a “vertical” line in the x,y
plane.

 The projection of the x, z plane, y  0, onto the the x,y plane is the line y  0, which
coincides with the x axis and is considered a “horizontal” line in the x,y plane.

 For nonzero k, the projection of the plane y  k onto the the x,y plane is the line
y  k, which is parallel to the x axis and is considered a “horizontal” line in the x,y
plane.

 The projection of the oblique vertical plane 2x  3y  6 onto the x,y plane is the line
2x  3y  6, which is not parallel to either the x or y axis and is considered an
“oblique” line in the x,y plane.

 The projection of the oblique vertical plane 2x  3y  0 onto the x,y plane is the line
2x  3y  0, which is an oblique line passing through the origin, 0,0.

Conversely, the vertical plane Ax  By  D can be thought of as the orthogonal projection of
the line Ax  By  D in the x,y plane into x,y, z space, parallel to the z axis.

The orthogonal projection of a horizontal plane onto the x, z plane is a horizontal line in the
x, z plane.
 The projection of the x,y plane, z  0, onto the the x, z plane is the line z  0, which

coincides with the z axis in the x, z plane.
 For nonzero k, the projection of the horizontal plane z  k onto the the x, z plane is

the line z  k, which is parallel to the z axis in the x, z plane.

The orthogonal projection of a horizontal plane onto the y, z plane is a horizontal line in the
y, z plane.
 The projection of the x,y plane, z  0, onto the the y, z plane is the line z  0, which

coincides with the z axis in the x, z plane.
 For nonzero k, the projection of the horizontal plane z  k onto the the y, z plane is

the line z  k, which is parallel to the z axis in the x, z plane.

The orthogonal projection of the y, z plane, or any plane parallel to it, onto the x, z plane is a
vertical line in the x, z plane.
 The projection of the y, z plane, x  0, onto the the x, z plane is the line x  0, which

coincides with the z axis in the x, z plane.
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 For nonzero k, the projection of the vertical plane x  k onto the the x, z plane is the
line x  k, which is parallel to the z axis in the x, z plane.

The orthogonal projection of the x, z plane, or any plane parallel to it, onto the y, z plane is a
vertical line in the y, z plane.
 The projection of the x, z plane, y  0, onto the the y, z plane is the line y  0, which

coincides with the z axis in the y, z plane.
 For nonzero k, the projection of the vertical plane y  k onto the the y, z plane is the

line y  k, which is parallel to the z axis in the y, z plane.

An equation such as 3x  5z  15 represents an oblique line in the x, z plane, and it
represents a plane in three-dimensional space, which is the orthogonal projection of that
line perpendicular to the x, z plane, or parallel to the y axis. (Conversely, the line is the
projection of that plane onto the x, z plane.) We refer to this type of plane as an oblique
plane parallel to the y axis.

An equation such as 2y  7z  14 represents an oblique line in the y, z plane, and it
represents a plane in three-dimensional space, which is the orthogonal projection of that
line perpendicular to the y, z plane, or parallel to the x axis. (Conversely, the line is the
projection of that plane onto the y, z plane.) We refer to this type of plane as an oblique
plane parallel to the x axis.

An equation such as 2x  3y  4z  12 represents a strictly oblique plane. It is not parallel
to any of the three axes.

2x  3y  4z  0 is a strictly oblique plane passing through the origin.

2. Using Vectors to Write Equations of Planes:

We learned in Section 12.4 that a plane is uniquely determined by two nonzero, non-parallel
vectors and a given point. In other words, given nonzero, non-parallel vectors a and b and a
point P, there is a unique plane to which a and b both belong and which contains P. If PA
represents a and PB represents b, we name the plane PAB. a  b is nonzero and is
orthogonal to PAB.

Recall that when we are dealing with nonzero vectors, the words orthogonal and
perpendicular are synonymous. Another synonym for these words is normal, i.e., two
nonzero vectors are normal if and only if they are perpendicular or orthogonal. Thus, we
can say that a  b is normal to PAB, and we therefore call it a normal vector for that plane.

In general, a nonzero vector is said to be normal to a plane, and is called a normal vector
for the plane, if and only if it is orthogonal to every vector belonging to that plane. For
example, the vector i is normal to the y, z plane, the vector j is normal to the x, z plane, and
the vector k is normal to the x,y plane.
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A vector is a normal vector for PAB if and only if it is parallel to a  b (i.e., if and only if it is a
nonzero scalar multiple of a  b.

A plane is uniquely determined by a point in the plane and a vector normal to the plane. In
other words, given a point and a normal vector, there is one and only one plane containing
that point and having that normal vector.

Let P0  x0,y0, z0 be a given point in a plane, and let n   a,b,c  be a normal vector for
the plane. Let P  x,y, z be any point in the plane. Then P0P is orthogonal to n, so
n  P0P  0.

P0P   x  x0,y  y0, z  z0 , so n  P0P  ax  x0  by  y0  cz  z0. Consequently:
 ax  x0  by  y0  cz  z0  0 Call this Point, Normal Vector Form
 ax  by  cz  ax0  by0  cz0
The latter equation corresponds to Standard Form, Ax  By  Cz  D, where A,B,C are the
same as a,b,c, respectively, and D  ax0  by0  cz0. (However, we may need to divide
both sides of the equation by 1 to ensure that the first nonzero coefficient is positive, if we
choose to follow that convention.)

Our book writes ax  by  cz  d  0, so d  D and D  d.

If r is the position vector for the point P, i.e., r   x,y, z , then Ax  By  Cz  n  r.

If r0 is the position vector for the point P0, i.e., r0   x0,y0, z0 , then D  n  r0.

Thus, Standard Form can be condensed as n  r  n  r0.

Usually, we use a  b as our normal vector n.

Let us revisit Examples Four and 10 of Section 12.4. We had a   4,1,3  and b 
 3,4,5 , with a  b   7,11,13 . Let a and b be placed at the point P  5,2,6, so
that A  9,3,9 and B  8,6,11. We asserted that the equation of PAB is
7x  11y  13z  21. Let us now see how that equation was obtained. Using 5,2,6 as
x0,y0, z0 and  7,11,13  as  a,b,c , we have:
7x  5  11y  2  13z  6  0 (This is Point, Normal Vector Form)
7x  35  11y  22  13z  78  0
7x  11y  13z  21  0
7x  11y  13z  21
7x  11y  13z  21 (We divided by 1 to obtain a positive leading coefficient)
We could also have obtained this from the formula n  r  n  r0.
n  r   7,11,13    x,y, z   7x  11y  13z
n  r0   7,11,13    5,2,6   35  22  78  21
Thus, we obtain 7x  11y  13z  21
Dividing by 1 on both sides gives us 7x  11y  13z  21.
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3. Intercepts of Planes:

If a plane intersects the x axis at a unique point, that point is known as the plane’s x
intercept. If a plane does not intersect the x axis at a unique point, then it does not have an
x intercept (i.e., the x intercept is undefined). This could occur because the plane fails to
intersect the x axis at all, or because the plane contains the x axis. (The planes z  5 and
z  0 illustrate these two possibilities.)

The plane’s y and z intercepts are defined similarly.

Every point on the x axis has 0 as its y and z coordinates. Every point on the y axis has 0 as
its x and z coordinates. Every point on the z axis has 0 as its x and y coordinates. Hence,
assuming each intercept exists, we may find each intercept by substituting 0 for the other
two coordinates. In other words:
 We find the x intercept by substituting 0 for y and z.
 We find the y intercept by substituting 0 for x and z.
 We find the z intercept by substituting 0 for x and y.

The plane Ax  By  Cz  D has an x intercept if and only if A is nonzero. It has a y intercept
if and only if B is nonzero. It has a z intercept if and only if C is nonzero.
 When A is nonzero, the x intercept is  D

A , 0,0, casually referred to as D
A .

 When B is nonzero, the y intercept is 0, D
B , 0, casually referred to as D

B .

 When C is nonzero, the z intercept is 0,0, D
C , casually referred to as D

C .

For example, the plane 3x  5z  15 (or 3x  0y  5z  15) has x and z intercepts but no y
intercept (the plane does not intersect the y axis). Its x intercept is 5,0,0 and its z intercept
is 0,0,3. We may casually refer to these intercepts as 5 and 3, respectively.

If D  0, then any intercept that exists must be the origin, 0,0,0. We may casually refer to
each intercept as 0.

For example, the plane 3x  5z  0 has 0,0,0 as its x and z intercepts. Its y intercept is
undefined (the plane contains the y axis). Casually, we may say that its x and z intercepts
are 0.

If D  0 and A, B, and C are all nonzero, then all three intercepts are the origin.

For example, the plane 7x  5y  11z  0 has 0,0,0 as its x, y, and z intercepts. Casually,
we may say that its x, y, and z intercepts are 0.

If A, B, C, and D are all nonzero, the plane has x, y, and z intercepts that are three distinct
points. In this case, we can use the three intercepts to sketch the plane, by drawing a
triangular “wedge” of the plane.
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For example, the plane 2x  3y  4z  12 has x intercept 6,0,0, y intercept 0,4,0, and z
intercept 0,0,3. (We may casually refer to these intercepts as 6, 4, and 3, respectively.)
We may plot these three points and then connect them with line segments to draw a
triangular wedge of the plane.

If a plane has nonzero x,y, z intercepts p,q, r, respectively, then its equation can be written
as x

p  y
q  z

r  1. (The derivation of this formula is as follows: p  D
A , so A  D

p .
q  D

B , so B  D
q . r  D

C , so C  D
r . By substitution, the equation Ax  By  Cz  D may

be written D
p x 

D
q y 

D
r z  D. Dividing out the D gives us 1

p x 
1
q y 

1
r z  1. )

For example, the plane 2x  3y  4z  12 could be written as x
6  y

4  z
3  1.

4. Parametric, Symmetric, and Vector Equations of Lines:

In Section 12.2, we discussed how to write parametric equations for a line in either
two-dimensional space or three-dimensional space. These equations express the line in
terms of an independent parameter, usually t. Let us review this subject...

Given a line in the x,y plane, we choose any two distinct points on the line, P0  x0,y0 and
P1  x1,y1. Let a  x1  x0, and let b  y1  y0. Then the line has parametric equations
x  x0  at, y  y0  bt, where t  ,. Note that a and b cannot both be zero. The point
x0,y0 corresponds to t  0, and the point x1,y1 corresponds to t  1.

Given a line in x,y, z space, we choose any two distinct points on the line, P0  x0,y0, z0
and P1  x1,y1, z1. Let a  x1  x0, let b  y1  y0, and let c  z1  z0. Then the line has
parametric equations x  x0  at, y  y0  bt, z  z0  ct, where t  ,. Note that a, b,
and c cannot all be zero. The point x0,y0, z0 corresponds to t  0, and the point x1,y1, z1
corresponds to t  1.

When we have written parametric equations for a line, we may say that we have
parameterized the line, or have represented the line parametrically, or have adopted a
parameterization for the line. This all depends on the choice of the points P0 and P1. Since
P0 and P1 are chosen arbitrarily, there are infinitely many different ways to parameterize a
line.

If we restrict the parameter so t  0,1, we obtain the line segment P0P1.

x0  at is a function of t, giving us the x coordinate of the point on the line generated by a
given value of t. We may refer to this function as xt. Thus, we have xt  x0  at.
Similarly, we may write yt  y0  bt and, in the three-dimensional case, zt  z0  ct.

Note that x0  x0, x1  x1, y0  y0, y1  y1, z0  z0, and z1  z1.
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Any real value of t generates a unique point on the line, denoted P t. In the two-dimensional
case, P t  xt,yt. In the three-dimensional case, P t  xt,yt, zt.

The point P0 may be referred to as the initial point of the line, and the point P1 may be
referred to as the unitary point of the line. (These designations apply only in the context of
the chosen parameterization.)

(When dealing with an oriented line segment, we refer to its second endpoint as the
terminal point. When dealing with a line, however, it would not make sense to refer to any
point as a terminal point, because the line does not “stop” at any point. Hence, you should
not refer to P1 as the terminal point. Instead, we name it the unitary point, because “unitary”
derives from the word “unit,” which means 1, which is the value of t that generates this
point.)

A given parameterization implies a particular orientation of the line. The line’s forward or
positive direction is the direction we follow when moving from P0 to P1. Hence, a line with a
parameterization may be referred to as an oriented line or a directed line.

For a parameterized two-dimensional line, if a and b are both nonzero, then the parametric
equations x  x0  at, y  y0  bt can be solved for t, giving us the equations t  x  x0

a and
t  y  y0

b
. It follows that x  x0

a  y  y0
b

. This is known as the symmetric equation of the
line.

For a parameterized three-dimensional line, if a, b, and c are all nonzero, then the
parametric equations x  x0  at, y  y0  bt, z  z0  ct can be solved for t, giving us the
equations t  x  x0

a , t  y  y0
b

, and t  z  z0
c . It follows that:


x  x0
a  y  y0

b


x  x0
a  z  z0

c


y  y0
b

 z  z0
c

These three equations are known as the symmetric equations of the line. We summarize
them by writing x  x0

a  y  y0
b

 z  z0
c .

Let r0 be the position vector for the point P0, and let r1 be the position vector for the point
P1.
 In two-dimensional space, r0   x0,y0  and r1   x1,y1 . So r1  r0 

 x1  x0,y1  y0    a,b .
 In three-dimensional space, r0   x0,y0, z0  and r1   x1,y1, z1 . So r1  r0 

 x1  x0,y1  y0, z1  z0    a,b,c .

r1  r0 is a nonzero vector and is referred to as a direction vector for the line. We shall
denote it as v. When placed at any point on the line, v points in the line’s forward or
positive direction. In particular, when placed at tail P0, its tip is P1, so v is represented by
the directed line segment P0P1.
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The components of v are known as the direction numbers of the line. In other words, in
the two-dimensional case, the direction numbers are a and b, while in the three-dimensional
case, the direction numbers are a, b, and c.

Let rt be the position vector for the point P t.
 In two-dimensional space, rt   xt,yt .
 In three-dimensional space, rt   xt,yt, zt .

In two-dimensional space, rt   xt,yt    x0  at,y0  bt  
 x0,y0   t  a,b   r0  tv.

In three-dimensional space, rt   xt,yt, zt    x0  at,y0  bt, z0  ct  
 x0,y0, z0   t  a,b,c   r0  tv.

In both two and three dimensions, we have rt  r0  tv 
r0  tr1  r0 
r0  tr1  tr0 
r0  tr0  tr1 
1  tr0  tr1

In summary, a parameterized line may be represented by the following vector equations:
 rt  r0  tv 2D or 3D
 rt  1  tr0  tr1 2D or 3D
 rt   x0  at,y0  bt  2D
 rt   x0  at,y0  bt, z0  ct  3D
 rt   x0,y0   t  a,b  2D
 rt   x0,y0, z0   t  a,b,c  3D
 rt  x0  ati  y0  btj 2D
 rt  x0  ati  y0  btj  z0  ctk 3D

5. Intersections of Lines:

When we are dealing with two lines, each represented parametrically, it is best to use a
different independent parameter for each line. Usually, we use the parameter s for one line
and the parameter t for the other line. We may represent line L1 by r1s and line L2 by
r2t.

In the x,y plane, r1s   x1s,y1s    x01  a1s,y01  b1s , and
r2t   x2t,y2t    x02  a2t,y02  b2t . Line L1 has direction vector v1   a1,b1 ,
while line L2 has direction vector v2   a2,b2 .

In x,y, z space, r1s   x1s,y1s, z1s    x01  a1s,y01  b1s, z01  c1s , and
r2t   x2t,y2t, z2t    x02  a2t,y02  b2t, z02  c2t . Line L1 has direction vector
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v1   a1,b1,c1 , while line L2 has direction vector v2   a2,b2,c2 .

v1 and v2 are parallel vectors if and only if L1 and L2 are either the same line or parallel
lines.

To find the intersection of the two lines, we solve a system of linear equations.

In the x,y plane, we solve the following system (two equations in two unknowns):
 x1s  x2t, or x01  a1s  x02  a2t, or a1s  a2t  x02  x01

 y1s  y2t, or y01  b1s  y02  b2t, or b1s  b2t  y02  y01

In x,y, z space, we solve the following system (three equations in two unknowns):
 x1s  x2t, or x01  a1s  x02  a2t, or a1s  a2t  x02  x01

 y1s  y2t, or y01  b1s  y02  b2t, or b1s  b2t  y02  y01

 z1s  z2t, or z01  c1s  z02  c2t, or c1s  c2t  z02  z01

If the system has infinitely many solutions, then L1 and L2 are the same line. If the system
has a unique solution, then L1 and L2 cross at a unique point. If the system has no solution,
then L1 and L2 are disjoint (i.e., non-intersecting).

In the x,y plane, two lines are disjoint if and only if they are parallel. In x,y, z space,
however, disjoint lines are either parallel or skew. (Two lines are said to be skew with
respect to each other if they are non-intersecting and non-parallel; skew lines can arise only
in three-dimensional space, never in two-dimensional space.) Once you have determined
that a pair of three-dimensional lines is disjoint (because the three-by-two system of
equations has no solution), you can then decide whether the lines are parallel or skew by
comparing their direction vectors (if the vectors are parallel, then so are the lines, but if the
vectors are non-parallel, then the lines are skew).

To solve the three-by-two system of equations, we pick any two of the three equations,
giving us a two-by-two system. We solve this two-by-two system, using the algebra
techniques of substitution or elimination by addition. If the two-by-two system has no
solution, then neither does the three-by-two system. On the other hand, if the two-by-two
system has a solution, then we must check that this ordered pair also satisfies the third
equation. If it does, then we have found the solution of the three-by-two system, but if it
does not, then the three-by-two system has no solution.

Example (a): Say we have the lines r1s   6  3s, 4  s, 10  4s  and r2t 
 1  t,5  5t, 2  2t . We must solve the linear system 6  3s  1  t, 4  s  5  5t, and
10  4s  2  2t. We may rewrite these equations as 3s  t  5, s  5t  9, and
4s  2t  8. Let us choose the first two equations. If we elminate s, we obtain t  2.
Plugging in 2 for t, we obtain s  1. Now we check that these values satisfy the third
equation (which they do). Now we may find the point of intersection. We may either plug
s  1 into the first vector equation, or we may plug t  2 into the second vector equation.
Either way, we get the point 3,5,6. This is the intersection point for the two lines.
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Example (b): Say we have the lines r1s   2s, 5  3s, 4  2s  and r2t 
 3  4t, 1  6t, 4t . We must solve the linear system 2s  3  4t, 5  3s  1  6t,
4  2s  4t. We may rewrite these equations as 2s  4t  5, 3s  6t  4, and 2s  4t  4.
If we use elimination on the first and third equations, we obtain the result 0  9, indicating
the system has no solution (the lines do not intersect). Are the lines parallel or skew? The
direction vector for the first line is v1   2,3,2 . The direction vector for the second line
is v2   4,6,4 . Note that v2  2v1, or v1   1

2 v2. Since the direction vectors are
parallel, the lines are parallel.

Example (c): Say we have the lines r1s   6  2s, 3  s, 1  2s  and r2t 
 4  t, 5  t,2  3t . We must solve the linear system 6  2s  4  t, 3  s  5  t,
1  2s  2  3t. We may rewrite these equations as 2s  t  10, s  t  2, and 2s  3t  3.
Let us choose the first two equations. If we elminate t, we obtain s  4. Plugging in 4 for s,
we obtain t  2. Now we check that these values satisfy the third equation. They do not!
The system has no solution, and the lines do not intersect. Are the lines parallel or skew?
The direction vector for the first line is v1   2,1,2 . The direction vector for the second
line is v2   1,1,3 . These vectors are not scalar multiples of each other, so the lines
are skew.

6. Miscellaneous Other Topics:

The distance between the plane Ax  By  Cz  D, or ax  by  cz  d  0, and a point not in

the plane, P1  x1,y1, z1, is
Ax1  By1  Cz1  D

A2  B2  C2
, or

ax1  by1  cz1  d

a2  b2  c2
. Here is a way to

remember this. Let n   a,b,c  be the normal vector for the plane, and let r1 be the

position vector for P1, i.e., r1   x1,y1, z1 . Then the distance is
nr1  d

n .

Let L be a given line containing the point P0  x0,y0, z0, and let P1  x1,y1, z1 be a point
not lying on L. Let u  P0P1   x1  x0,y1  y0, z1  z0 , and let v be a direction vector for

L. Then the distance between P1 and L is
u  v
v .

Two planes with parallel normal vectors are either the same plane or parallel planes. To
see which, write the equations so their left sides are identical. The planes Ax  By  Cz  D1

and Ax  By  Cz  D2 are parallel if and only if D1  D2. The distance between these two

planes is
D1  D2

A2  B2  C2
. This can also be expressed as

D1  D2

n , where n   A,B,C  is the

normal vector for the two planes.
 The planes 6x  9y  12z  15 and 8x  12y  16z  20 have normal vectors

 6,9,12  and  8,12,16 , respectively. These vectors are parallel, because
each is a scalar multiple of the other (the latter is 4

3 times the former, and the former
is 3

4 times the latter). Multiplying the second equation by 3
4 , we obtain the

equivalent equation 6x  9y  12z  15. Thus, the two planes are the same plane.
 The planes 4x  6y  8z  5 and 6x  9y  12z  7 have normal vectors  4,6,8  and

 6,9,12 , respectively. These vectors are parallel, because each is a scalar
multiple of the other (the latter is 3

2 times the former, and the former is 2
3 times the
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latter). Multiplying the second equation by 2
3 , we obtain the equivalent equation

4x  6y  8z  14
3 . Now we see that we have parallel planes, with D1  5 and

D2  14
3 . D1  D2  5  14

3  15
3  14

3  1
3 , and n  A2  B2  C2 

42  62  82  116 or 2 29 , so the distance between the planes is 1

3 116
or

1

6 29
or 29

147 .

Two skew lines can be thought of as two lines lying in parallel planes. Consequently, the
distance between the two skew lines is the same as the distance between those two planes.

Given the equations of two skew lines, we can find the parallel planes containing them as
follows. Let v1 be a direction vector for the first line, and let v2 be a direction vector for the
second line. Then v1  v2 can serve as a normal vector for both planes. Using any point on
the first line, we can write an equation for the first plane in Point, Normal Vector Form, and
then we do likewise for the second plane.

The angle between two non-parallel planes is the angle between their normal vectors.
Thus, if the planes have normal vectors n1 and n2, then the angle is cos1 n1n2

n1n2
.

Two planes are perpendicular if and only if their normal vectors are orthogonal. In other
words, two planes with normal vectors n1 and n2 are perpendicular if and only if n1  n2  0.

The intersection of two non-parallel planes is a line. If the planes have normal vectors n1

and n2, then n1  n2 can serve as a direction vector for the line (the line is in both planes, so
it is perpendicular to both normal vectors). To write an equation for the line, we also need a
point lying on the line. The simplest way of finding a point on the line is to take the
equations of the two planes, substitute 0 for one of the three variables, and then solve the
resulting two-by-two system of linear equations.
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